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Combined sewer overflows (CSOs) remain a major source of urban water pollution, exacerbated by increasing
rainfall extremes and expanding impervious surfaces. Yet efforts to model and mitigate CSOs are often hampered
by limited access to detailed sewer infrastructure data. This study presents a data-reduced modelling framework
based on delineated urban blocks, which serve as both hydrological response units and the spatial basis for
generating gravity-consistent synthetic sewer networks from open geospatial data. We compared four model
configurations: Thiessen polygons with a real network, blocks with a real network, blocks with a synthetic
network, and a lumped model, using 32 monitored overflow events in a Swiss catchment. The synthetic block
model reproduced overflow volumes within —10 % to +20 %, matched 80 % of peak timings within 15 min, while
reducing structural complexity by approximately 30 %. Kling-Gupta efficiency scores confirmed valid perfor-
mance, though simplified models tended to overpredict peak flows and underestimate overflow durations. The
synthetic configuration exhibited more frequent surcharging and lower conduit storage near the outlet, reflecting
geometric trade-offs in the automated layout. Despite these limitations, block-based models preserve spatial
attribution of runoff and enable rapid screening of decentralised interventions without requiring full network
datasets. The framework supports early-stage planning and is compatible with both open-source and utility-held
data. By aligning model structure with urban form and reducing data demands, this approach offers a scalable,
reproducible framework for planning and prioritising decentralised interventions for CSO mitigation, even in
cities with limited access to sewer infrastructure data.

Wastewater Treatment Directive sets a non-binding target to limit storm
overflows to <2 % of annual dry-weather load, while the U.S. policy

1. Introduction

Combined sewer systems (CSS), introduced in the mid-nineteenth
century to protect public health, still serve many modern cities as
single-pipe systems to convey both wastewater and stormwater to
treatment plants (Butler et al., 2018; Tibbetts, 2005). Even during
common storm events, these systems can become overloaded, triggering
overflows at designated relief points—combined sewer overflows
(CSOs)—or through manholes, which remain a major contributor to
urban water pollution despite stormwater dilution (Petrie, 2021; Phillips
et al., 2012). Urbanisation and climate change intensify this challenge:
the expansion of impervious surfaces increases runoff volumes, while
shifts in rainfall patterns, including more frequent short, intense bursts,
can push many systems beyond their intended operating range (Angel,
2023; Farina et al., 2024; Fowler et al., 2021). Regulatory standards
have tightened internationally; for example, the revised 2024 EU Urban
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similarly enforces controls under the CSO Control Policy and Water
Infrastructure Act (European Parliament and Council of the European
Union, 2024; United States Congress, 2019; United States Environ-
mental Protection Agency, 1994). Despite these efforts, infrastructure
once built to protect public health still pollutes urban waterways,
underscoring the need for planning tools that help cities evaluate
decentralised stormwater interventions and reduce pressure on cen-
tralised systems.

Cities increasingly rely on decentralised stormwater measures to
reduce surface runoff entering combined sewer systems and improve
urban water resilience. Low Impact Development (LID) approaches are
one such measure that introduce infiltration and storage features into
the urban fabric to retain runoff near its source (Friesen et al., 2025;
Martin-Mikle et al., 2015; Wright et al., 2016). Supporting such
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interventions requires planning tools that can represent spatial vari-
ability in runoff generation at appropriate scales. However, many
existing planning tools face practical limitations when applied to this
context: they require detailed input data due to high data demands, lack
spatial explicitness, are difficult to reproduce with open datasets, and
often prioritise detailed simulation over usability (Bach et al., 2020;
Duque et al., 2022; Kuller et al., 2022, 2017; Rauch et al., 2017).

For CSO mitigation in particular, planning tools require an under-
standing of how surface runoff is routed through sewer networks, yet
available modelling approaches fall at opposite ends of the spectrum.
Detailed urban drainage models, such as the U.S. Environmental Pro-
tection Agency (EPA) Stormwater Management Model (SWMM), pro-
vide comprehensive representations of runoff generation and hydraulic
routing (Rossman, 2010), but require extensive input data and high
computational effort, which limit their use in early-stage planning
(Chegini et al., 2025). Network simplification strategies—including
conduit pruning, subcatchment aggregation, and network skel-
etonisation—reduce model resolution but still depend on surveyed
sewer networks and case-specific assumptions (Cantone and Schmidt,
2009; Goldstein et al., 2016; Krebs et al., 2014; Pichler et al., 2024). At
the opposite extreme, hydrological simplification approaches omit the
sewer network entirely and rely on lumped or data-driven formulations
that estimate overflows using proxy variables such as imperviousness,
rainfall, or population (Farina et al., 2023; Montoya-Coronado et al.,
2024; Quaranta et al., 2022). Collectively, these detailed and highly
simplified approaches leave a clear methodological gap: a simple,
spatially explicit, open-data modelling framework that retains essential
hydraulic information while remaining compatible with early-stage
planning.

Urban blocks represent a practical spatial unit for managing runoff
near its source. Defined as the areas enclosed by bordering streets, they
represent the essential intermediate scale of urban form that aligns
closely with how cities organise land use and plan local infrastructure
(Conzen, 1960; Moudon, 1997; Oliveira, 2024; Siksna, 1997). Hydro-
logically, blocks act as relatively uniform runoff units that contribute
discretely to the larger catchment. Previous studies support this dual
identity—as meaningful units in both urban planning and hydrology:
the MUST-B framework demonstrated that blocks can function as the
smallest hydrological unit for modelling infiltration and retention
(Khurelbaatar et al., 2021), while Lippera et al. 2025 showed their
usefulness for identifying areas suitable for decentralised interventions
to reduce CSOs. In contrast, conventional subcatchments used in urban
drainage models are delineated by drainage connectivity—typically as
Thiessen polygons or DEM-based flow areas around manholes (Ji and
Qiuwen, 2015; Si et al., 2024), which represent purely hydrologic ag-
gregation units disconnected from the urban structure. To our knowl-
edge, no study has examined whether block-based units can reproduce
the hydrologic response of conventional subcatchments or explored how
block boundaries can support the derivation of drainage inlet points and
the generation of a synthetic sewer network directly from open geo-
spatial data. This gap highlights the potential of urban blocks to bridge
urban morphology and drainage modelling, particularly for planning
decentralised interventions.

We propose a data-reduced, block-based modelling workflow that
uses open geospatial data to support early-stage evaluation of combined
sewer overflow (CSO) risk. In this framework, urban blocks serve two
complementary roles: (i) as hydrological response units aligned with
planning needs, and (ii) as geometric outlines for generating synthetic,
gravity-prioritised sewer networks in the absence of detailed sewer asset
data. We implement this capability by automatically linking each block
to a drainage inlet and generating a network layout from street-network
and elevation data, following graph-based hydraulic principles demon-
strated in open-source tools, such as pysewer, REWATnet, and
SWMManywhere (Calle et al., 2023; Dobson et al., 2025; Sanne et al.,
2024).

Our central question is: To what extent can urban blocks be used to
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simplify urban drainage models, both spatially and hydraulically,
without compromising key CSO behaviours and network performance?
To answer this, we evaluate four model configurations across a gradient
of data complexity: a conventional model setup—the reference model,
two block-based setups (using real and synthetic sewer networks), and a
lumped alternative. We address this through three objectives:

1. Assess model accuracy under different spatial and hydraulic simpli-
fications using cross-validation across 32 storm events.

2. Evaluate network-level hydraulic performance using indicators such
as the Hydraulic Performance Index (HPI) and Contributing Area
Impact (CAI).

3. Examine CSO behaviour across configurations, focusing on reli-
ability, reproducibility, and suitability for decentralised planning.

Overall, we aim to assess whether data-reduced, block-based models
can reproduce key CSO dynamics with sufficient reliability for early-
stage planning, and to clarify the trade-offs introduced by spatial and
hydraulic simplification.

2. Materials and methods
2.1. Case study and monitoring data

To evaluate how spatial and hydraulic simplification affects CSO
modelling, we tested four configurations in a real-world case study,
including a conventional configuration and two block-based variants, as
well as a lumped alternative. The study area used was a 16.85-hectare
industrial CSO catchment (RUB Industrie, RUB80) in Fehraltorf, about
15 km east of Ziirich, Switzerland. As part of the Urban Water Obser-
vatory (UWO) initiative, the site provides high-resolution, open-access
data, including a full SWMM model (the original model) and hydro-
logical and meteorological observations, offering a controlled sandbox
for developing and verifying the data-reduced modelling concept pre-
sented in this study. (Blumensaat et al., 2022a, 2022b, 2023b). The CSO
catchment receives dry-weather inflow equivalent to approximately 981
inhabitants and surface runoff from 7.6 hectares of impervious area
draining to a 200 m® flow-through storage basin equipped with a pump
station (Blumensaat et al., 2023a). Under dry weather conditions, flows
are pumped to the wastewater treatment plant; during rainfall, excess
water is discharged to the Kempt River via the monitored weir (Fig. 1).
Despite its small size, the area contributes 10-15 % of the annual CSO
volume at the catchment scale, confirming its hydraulic relevance
(Rodriguez et al., 2024).

For this study, rainfall and combined sewer overflow observations
from 2019 to 2020, recorded at a 1-minute temporal resolution, were
used to identify calibration and validation events. Rainfall events were
defined as continuous periods with an intensity >0.1 mm/h, separated
by at least 6 h of no rain (inter-event dry period) (Broekhuizen et al.,
2020). Overflow events were identified when discharge exceeded 0.1
L/s and were merged if interruptions < 3 h occurred to preserve hy-
draulic continuity and avoid splitting a single overflow response caused
by regulator behaviour or sensor noise. Each overflow was then linked to
a storm if it started within 6 h after the rainfall began, ensuring one
overflow per storm event. In total, 32 observed events met these criteria
and were used for model calibration and testing. For each event, we
calculated rainfall duration, depth, and intensity, overflow volume and
duration, lag time and antecedent dry period (ADP). A summary of
rainfall event characteristics is provided in Supplementary Table ST2.
Event severity was classified using Intensity-Duration-Frequency (IDF)
curves (DWA-A 531, 2025) derived from a 35-year, 10-minute rainfall
series recorded at a station 15 km from Fehraltorf (MeteoSwiss, 2024).

2.2. Urban block mapping

Urban blocks were delineated from the OpenStreetMap (OSM) street
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Fig. 1. Overview of Fehraltorf’s industry combined sewershed, located near Zurich, Switzerland. The study focuses on a 16.85-hectare industrial CSO catchment

(shaded), draining to the RUB Industrie overflow structure.

network using OSMnx (Boeing, 2025). The street-network graph was
simplified to remove artefacts such as isolated links, dead-end nodes,
and to consolidate intersections, ensuring topological consistency.
Blocks were then derived by converting cleaned street centerlines into
closed polygons, assigning half the street width to each side so that
rights-of-way were fairly distributed among adjacent blocks. This
approach ensured geometric alignment between street layouts and block
boundaries, producing spatially coherent hydrological response units.
Block attributes were calculated using multiple open data sources.
Slope was derived from the UWO digital elevation model (DEM), while
imperviousness was computed using the World Settlement Footprint
(WSF 2019) raster (German Aerospace Center, 2023). The raster was
clipped to block extents and sealed pixels vectorised, allowing imper-
vious area to be calculated as the ratio of sealed to total block area.
Dry-weather flow for each block was assigned using the inflow values
defined by the catchment characteristic, while groundwater infiltration
was distributed proportionally to match the observed total inflow con-
ditions represented in the original UWO model. Additional geometric
properties, such as block area and characteristic width, were computed
to support hydrological parameterisation. Width was calculated as the
area divided by convex-hull diameter (D,), representing the block’s

longest internal span. This setup provided each block with hydrologi-
cally meaningful attributes while remaining fully automatable with
open geospatial data.

2.3. Synthetic sewer network

To represent drainage networks in data-scarce contexts, a synthetic
combined sewer network was generated using the open-source Python
package pysewer (Sanne et al., 2024). This method produces topologi-
cally valid, gravity-driven sewer networks using elevation data, road
layouts, and building locations. For this study, we adapted pysewer to
work with block geometries and to represent combined sewer flow
conditions, including both dry- and wet-weather components. This
method provides a quick, consistent framework for generating sewer
network layouts that reflect the typical alignment and structure of real
urban drainage systems, supporting exploratory analyses for planning
applications.

Block connection manholes (drainage inlets) were used as network
nodes and assigned the aggregated inflow attributes of the contributing
blocks. Wet-weather contributions were represented indirectly through
a combined-sewer factor (equivalent to the traditional dilution factor),
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which scales dry-weather inflows by a uniform wet-to-dry ratio. This
factor was iteratively adjusted until the total storage volume of the
synthetic network matched that of the real system, ensuring comparable
hydraulic behaviour while maintaining data reduction.

The synthetic network was constructed as a directed graph, with
nodes representing manholes and conduits representing sewer sections.
A repeated shortest-path heuristic was applied using manhole connec-
tion points to generate a directed Steiner arborescence (Hwang and
Richards, 1992) to route flows toward the CSO control structure,
ensuring gravity-driven routing and minimising unrealistic loopbacks.
Conduit diameters were sized based on blocks’ dry-weather peak inflows
scaled by the combined sewer factor. Trench invert elevations were
derived from the DEM using trench depth limits of 1-8 m and a mini-
mum slope constraint of —0.01. The conduit slope was calculated as the
average invert slope between the upstream and downstream trench el-
evations of each conduit. This workflow created a simplified network
based on block outlines, approximating the gravity-driven routing and
storage capacity of the real drainage system.

2.4. Connection manholes

To assign subcatchments to the connection manholes, we imple-
mented two methods designed for different data scenarios.

1. Frontage buffer method: Used when connecting to known man-
holes (invert elevation available). Blocks were buffered by 10 m to
approximate the typical placement of manholes along the public
right-of-way. Manholes intersecting this zone were identified using a
spatial index, and the one with the lowest invert elevation was
selected. This improves on typical centroid-based linking ap-
proaches, which often assign subcatchments to the nearest node
using Euclidean distance or simple snapping, without considering

Thiessen:
Real,

Blocks:
Real,

— Real network
— Synthetic network

CSO structure
Manhole

Synthetic,e "
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topographic or urban form constraints (Schilling and Tranckner,
2022; Si et al., 2024).

2. Road-profile method: Developed for synthetic network applica-
tions where explicit manhole data are unavailable. Road elevations
were sampled from the DEM at 10-m increments around each block,
and the lowest point sampled was assigned the virtual connection
manhole. To avoid overloading a single inlet point, the reuse of
manholes was limited to three blocks per manhole. Finally, if a block
corner (junction) was found within 30 m of the candidate manhole
and had a similar elevation (within 0.5 m), the outlet was snapped to
that junction, while ensuring 80 m manhole spacing was maintained.
This ensured that connection manholes remained topographically
plausible and aligned with the block boundary.

These connection methods
Figure SF5.

are depicted in Supplementary

2.5. Model configurations

We assembled four configurations that represent distinct positions
along a gradient of spatial and hydraulic simplification (Fig. 2). All four
configurations shared identical rainfall input, groundwater infiltration,
dry-weather flow, and CSO control structure (200 m® basin, pump sta-
tion, and overflow weir; Fig. 1). This ensured that differences in results
could be attributed solely to differences in surface discretisation and
network representation. Each configuration is briefly described below.

1. Thiessen: Reale¢

Subcatchments were delineated using Thiessen polygons around
observed manholes, following the standard approach in SWMM practice
when detailed surface delineations are unavailable. These polygons
were then connected to the surveyed sewer network, preserving the real
pipe layout, invert elevations, and control structures. This configuration

Blocks:

Fig. 2. Schematic of the four model configurations tested: Thiessen: Real,, Blocks: Realy, Blocks: Synthetic,e;, and Lumped. All share identical rainfall forcing and
CSO control structure but differ in surface discretisation and network representation.
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represents the planning-level reference model against which alternatives
were compared.

2. Blocks: Real,e;

Urban block polygons served as subcatchments, linked to the sewer
network via the frontage buffer method. While the network topology
and conduit characteristics were identical to Thiessen: Real,et, the sur-
face discretisation was fundamentally different, reflecting the block-
based approach introduced in this study.

3. Blocks: Syntheticpet

Blocks were connected using the road-profile method to a synthetic
network generated with pysewer (see 2.3 Synthetic sewer network). The
generated network preserved topological validity and generalised
gravity-driven routing, but differed from the surveyed network in pipe
lengths and diameters.

4. Lumped

A single subcatchment aggregated the entire sewershed area and
drained directly to the CSO structure, with dry-weather flow and infil-
tration scaled accordingly. The internal network was reduced to a
minimal representation, with no distributed routing or intermediate
nodes. This setup represents the extreme simplification of both hydro-
logical and hydraulic detail.

Table 1 summarises the four model configurations analysed in this
study, highlighting the main model components and corresponding
evaluation aims.

2.6. Overview of evaluation objectives and indicators

To evaluate how structural simplification affects model reliability,
we assessed performance across both a data-reduction and structural
complexity gradient, ranging from fully detailed to highly simplified
configurations. Following James (2000), structural complexity was
quantified using a weighted count of SWMM elements, providing
context for interpreting trade-offs between model size and fidelity.
Further details are provided in Supplementary Note SN1.

Performance indicators were grouped according to three supporting
objectives (Table 2). These span: (i) model accuracy (goodness-of-fit),
where we quantified predictive skill using Kling-Gupta efficiency (KGE;
Gupta et al., 2009) and event-scale error metrics; (ii) network-level
hydraulic performance, assessed with indices of stress and load; and
(iii) event-scale CSO behaviour, characterised by volume, timing, and
detection statistics.

For clarity, we use the following terminology: a node represents a

Table 1
Overview of model configurations, key components, and evaluation aims.

Model Model components and Evaluation aim

configuration specifications

Thiessen: Conventional Thiessen- Reference model for
Realpe polygons subcatchments comparison with simplified

coupled with the real
(surveyed) sewer network (SN);
observed hydrological and site-
specific datasets

Subcatchment delineation
based on urban blocks derived
from open geospatial datasets;
real SN; observed hydrological
and site-specific datasets

configurations.

Blocks: Realyet Assess effect of spatial
discretisation. (Blocks vs

Thiessen polygons)

Blocks: Subcatchment delineation Evaluate whether blocks and
Syntheticpet based on urban blocks derived sewer networks derived from
from open geospatial datasets, open geospatial data can
use of synthetic SN; observed reproduce CSO dynamics
hydrological, site-specific where no surveyed SN data are
datasets, available.
Lumped Single aggregated Establish lower-bound

subcatchment without a sewer
network

performance sensitivity to
complete structural
simplification.

Table 2
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Overview of the indicators used to assess model performance with respect to the
outlined research objectives.

Objective

Indicators

Definition/ Note

(i) Model accuracy
along data-
reduction
gradient

(ii) Network-level
hydraulic
performance

(iii) Event-scale
CSO behaviour

Raw KGE; Normalised KGE
(KGE x acceptance rate,
threshold KGE > 0.2);
Overflow volume error (%);
Peak flow error (%); Time-
to-peak error (min)

Hydraulic Performance
Index (HPI); Contributing
Area Impact (CAI); CSO
attribution; Flow Instability
Index (FII)

Overflow volume
classification; Peak
discharge distribution;
Overflow duration
distribution; Spill frequency;
Detection rate; Error
direction

KGE compares correlation,
bias, and variability
between simulated and
observed CSO discharge;
event-scale errors quantify
accuracy of specific
hydrograph features.

HPI: surcharge relative to
burial depth (%). CAL:
upstream load share (%).
Critical conduits defined by
HPI > 60 and CAI > 75.
Derived from event-scale
simulations, compared with
32 observed events.
Captures whether simplified
models reproduce the
magnitude, timing, and
frequency of CSO events.

SWMM junction, outfall, or storage (e.g., a manhole or inlet where
runoff enters); a conduit is a SWMM pipe element between two nodes. A
drainage inlet denotes the node receiving runoff from a block or
subcatchment.

2.7. Multi-event calibration and validation

To evaluate parameter sensitivity, we first applied a variance-based
sensitivity analysis using Saltelli sampling (N = 1024) (Saltelli, 2002;
Sobol’, 2001), focusing on total outflow and peak flow as model re-
sponses. The most influential parameters were imperviousness, imper-
vious depression storage, Manning’s roughness for impervious areas,
subcatchment width, conduit slope, and conduit roughness. These pa-
rameters were retained for calibration.

To evaluate the robustness and generalisability of each model
configuration, we applied a five-fold cross-validation framework
inspired by standard practices in machine learning model assessment
(Stone, 1974). In each fold, 80 % of observed events were used for
calibration and 20 % for validation. Calibration was performed using the
Shuffled Complex Evolution algorithm (SCE-UA) (Duan et al., 1994), as
implemented in the SPOTPY package (Houska et al., 2015). Parameters
were sampled from uniform distributions within bounds derived from
the sensitivity analysis. The Kling-Gupta efficiency (KGE) was used as
the sole objective function, with a behavioural threshold of KGE > 0.2.
Each calibration run was limited to 25,000 evaluations, with early
stopping if convergence criteria were met. Across all folds and models,
this yielded roughly 500,000 simulations.

Model fidelity was assessed using the Kling-Gupta Efficiency (KGE),
supported by event-scale errors in overflow volume (%), peak discharge
(%), and time-to-peak (minutes). To justify the performance ranges used
in this study (Knoben et al., 2019), KGE values were compared with
these hydrological error metrics against accepted ranges for urban
drainage modelling (volume error:10 % to +20 %; peak error:15 % to
+25 %; James, 2000). These thresholds correspond to performance
typically considered sufficient to inform planning and scenario
screening, rather than for detailed hydraulic design. This analysis
revealed consistent clustering patterns, informing a -classification
scheme: “Poor” (KGE < 0.2), “Acceptable” (0.2-0.5), “Good” (0.5-0.7),
and “Very Good” (KGE > 0.7), as exemplified in Supplementary
Figure SF1, which compares KGE values with overflow volume and peak
errors. Simulations achieving KGE > 0.2 were classified as behaviour-
al—model runs that adequately reproduce the observed system response
within the derived KGE threshold (Beven and Binley, 1992). The cor-
responding behavioural parameter sets were then used for subsequent
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analysis.

For each fold, the median of all behavioural parameter sets from the
training phase was selected as the representative parameter set, which
was then applied to the associated test events. This constituted the test
phase of the cross-validation framework, which primarily evaluated
model generalisability. Model performance was evaluated per test event
and aggregated across folds using KGE, normalised KGE, event rejection
rate (proportion of test events with KGE < 0.2), and the previously
defined error metrics.

To assess differences between model configurations, non-parametric
statistical tests were applied. The Kruskal-Wallis H test was used to
assess overall differences in KGE and normalised KGE, and Man-
n-Whitney U tests were applied for pairwise comparisons between
reference or lumped models and the block-based alternatives.

Finally, a global parameter set was derived by pooling all valid
parameter sets (KGE > 0.2) from the training phases of all folds and
computing their median. This aggregated set was then applied in full-
domain simulations to assess combined sewer overflow (CSO) dy-
namics and hydraulic performance under representative conditions.
Parameter bounds and uniform distributions used in calibration are
listed in Supplementary Table ST4.

2.8. Network and CSO performance metrics

Performance was evaluated at both the external CSO scale and the
internal network scale using a combination of indices and graph-based
tracing methods.

The Hydraulic Performance Index (HPI) quantified conduit stress as
the ratio of surcharge height above the pipe crown to burial depth,
expressed as a percentage. Conduits without surcharge (free surface flow
conditions) were assigned an HPI of 0, while 100 % indicates when the
surcharge reaches ground level. Conduits with an HPI > 60 % were
considered critically stressed.

To determine a subcatchment’s contribution to CSO, we assessed
whether the subcatchment’s outlet node has a directed path to the CSO
node within the sewer network graph. Subcatchments with a reachable
path were included in the contributor set #/,. The relative contribution
of each subcatchment was then calculated as:

Vi

Ci =100 x (Zj& » vj>
Where V; denotes the total runoff volume from the subcatchment i
during the storm event. Subcatchments with no downstream path to the
CSO node or with a zero-runoff volume were assigned a zero contribu-
tion, ensuring that only hydraulically connected areas were considered.

The Contributing Area Impact (CAI) captured load accumulation by
tracing runoff propagation through the network. CAI for each conduit
was defined as a volume-weighted flow accumulation index (Beven and
Kirkby, 1979; Reyes-Silva et al., 2020). For each subcatchment, all
conduits downstream of its outlet were identified, including the initial
pipe segment and its runoff volume. Repeating this for all subcatchments
yielded total accumulated volumes per conduit. CAI for conduit k was
then expressed as:

CAL, =100 x —ZtERVi__
max(3-,1(i-m)-V;)

m
where 1(i—k) is an indicator equal to 1 if pipe k lies on a downstream
path from subcatchment i, and O otherwise. This metric identifies
accumulation hotspots and potential bottlenecks, relative to the most
loaded conduit.

Plotting HPI against CAI for all conduits enabled classification into
stable, stressed, loaded, or critical categories, highlighting bottlenecks
and stress patterns. These two indices formed the core of our hydraulic
evaluation. Additional diagnostics, including the Flow Instability Index
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(F1II), conduit storage, and monotonic upsizing checks, are provided in
Supplementary Note SN3.

At the CSO scale, we reported overflow volume, peak discharge, and
duration. Events were deemed valid if they met the KGE threshold of >
0.2. Spill frequency, detection rates, and error direction (over- vs un-
derestimation) were also analysed. To interpret event-scale overflow-
volume errors, simulated volumes were classified as Good (<15 %),
Acceptable (15-30 %), or Poor (>30 %), consistent with recommended
tolerances typically used in urban drainage modelling (James, 2000).

2.9. Modelling framework and automation

All simulations were carried out with the U.S. EPA Storm Water
Management Model (SWMM), using the dynamic-wave solver to ac-
count for surcharging, backwater effects, and flow reversals (Rossman,
2017). The workflow was automated in Python, with swmm-api
(Pichler, 2025) used for input file manipulation and result extraction,
pysewer (Sanne et al., 2024) for synthetic network generation, SALib
(Herman and Usher, 2017), for sensitivity analysis, SPOTPY (Houska
et al., 2015) for calibration, and NetworkX (Hagberg et al., 2008) for
graph-based diagnostics. Statistical analyses were performed with SciPy
(Virtanen et al., 2020). All simulations were carried out on a
high-performance computing cluster (See Additional Data). A full list of
package versions is provided in Supplementary Table ST10 and
Figure SF4, which shows the automated block-SWMM modelling
pipeline.

3. Results
3.1. Comparison of performance along a data-reduced gradient

We compared the four model configurations along a gradient of
spatial and hydraulic complexity, ranging from the detailed Thiessen:
Real¢ (the reference) to the fully aggregated Lumped setup. Relative to
the reference, structural complexity was reduced by approximately 12 %
in Blocks: Realpet, 28 % in Blocks: Syntheticye, and 91 % in Lumped,
reflecting fewer SWMM elements (subcatchments, nodes, and conduits)
while preserving the same hydrologic and hydraulic process represen-
tations. The Lumped setup contained nearly one order of magnitude
fewer elements than the network-based configurations. The full break-
down of subcatchments, nodes, and complexity scores is provided in
Supplementary Table ST1.

Cross-validation results show that all configurations reproduced CSO
discharge with comparable overall predictive skill, although their con-
sistency across events differed (Fig. 3). The Lumped model achieved the
highest raw KGE scores but had the lowest acceptance rate—fewer than
one in four test events exceeded the behavioural threshold (KGE > 0.2).
Consequently, its normalised KGE, defined as the product of the KGE and
acceptance rate, dropped significantly. In contrast, Blocks: Syntheticpet
was the most consistent, yielding the highest number of valid test events
and the lowest rejection rate. The Thiessen: Real,.t and Blocks: Realpet
configurations performed intermediately, with fold-level KGE typically
ranging from 0.35 to 0.59. Differences in normalised performance were
mainly driven by acceptance rates rather than by best-fold outcomes.
The Kruskal-Wallis H test indicated no statistically significant differ-
ences in KGE across the model configurations (p-value > 0.1), suggest-
ing that, on average, all models reproduced overflow dynamics with
comparable predictive skill. Pairwise statistical comparisons are avail-
able in Supplementary Note SN2.

Event-scale error metrics further illustrate how simplification
affected overflow dynamics. The Lumped model showed the smallest
deviations in overflow volume (-12.5 + 15.0 %) and peak flow (5.9 +
3.6 %), although its time-to-peak error was highly variable (-3.5 + 33.3
min). Blocks: Syntheticpt achieved similar reliability for volume (-20.2
+ 16.7 %) and time-to-peak (0.5 & 13.9 min), but exhibited larger peak
errors (38.6 + 13.1 %). The Thiessen: Realper and Blocks: Realyer both
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tended to underestimate overflow volumes (—31 % and —-34 %), while
overestimating peaks (32-34 %). In all network-based models, the peaks
were generally too high; however, the timings were within 10 min of the

observed events. These results indicate that simplification primarily
affects error direction and consistency across events, while overall
model performance remains comparable.
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3.2. Impact of the block-based delineation and network simplification on
the hydraulic performance

Differences in network representation strongly influenced hydraulic
behaviour. Plots of conduit stress (Hydraulic Performance Index, HPI)
versus load accumulation (Contributing Area Impact, CAI) revealed
clear contrasts between the real and synthetic layouts (Fig. 4). In the
Thiessen: Real,et and Blocks: Realye configurations, conduits clustered
almost entirely in the stable quadrant, with median HPI values close to
zero and few conduits exceeding the 60 % surcharge threshold. High-
load conduits (CAI > 75 %) were rare, and no flooding was observed.
Stress and load remained broadly distributed across the network, with
attenuation capacity concentrated near the inlet of the CSO control
structure, indicating a hydraulically coherent system.

The block-based with the synthetic network displayed markedly
different behaviour. Roughly one-quarter of conduits exceeded the 60 %
HPI threshold under frequent storms (T < 1 year, 6 h), increasing to one-
third under rarer 10-year return events. Several nodes flooded, and
conduits with CAI > 75 % were concentrated near the outlet, with a
median CAI of 16.3 % compared to 10.9 % in the real block network. As
shown in Fig. 4, conduits in the synthetic network shifted toward the
high-stress and high-load region with increasing storm severity, whereas
the real-network models remained largely stable.

Spatial diagnostics reinforced these findings. Maps of HPI and CSO
attribution (Fig. 5) illustrated that surcharge in the real networks was
dispersed across upstream reaches, while attenuation potential accu-
mulated in the outlet zone (the last 300 m before the outlet), where
490.2 m® of conduit storage was available. By contrast, the synthetic
layout exhibited shallower cover depths near the outlet (+3.2 m vs. a
median outlet cover depth of —2.6 m in the real network). The synthetic
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T
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network provided only 351 m? of conduit storage, 139.2 m? less than the
real network, mainly due to the smaller pipe diameters concentrated in
the outlet zone. These deficiencies resulted in a concentration of sur-
charge and high loads directly upstream of the CSO structure, co-located
with the subcatchments contributing the largest CSO volumes. The
flooded node volume reached 361 m?® in the synthetic network during
the 10-year storm, whereas no flooding occurred in either of the real-
network configurations. These diagnostics highlight that the synthetic
layout concentrated hydraulic stress in the outlet zone, whereas the real-
network configurations distributed it more broadly. Supporting network
diagnostics are given in Supplementary Tables ST7-9.

3.3. Assessment of event-based replication of CSO behaviour

Fig. 6 summarises how well each configuration reproduced observed
CSO dynamics across 32 events from 2019 to 2020. The Lumped
configuration produced the largest share of “Good” events (overflow-
volume error <15 %, 28.1 %), followed by the Thiessen reference (25
%). Both block-based configurations captured event dynamics but more
frequently fell into the “Poor” category (>30 % error; 72-75 % of
events). The error direction was systematic: the Lumped model consis-
tently overestimated volumes, whereas the network-based configura-
tions underestimated (Fig. 6a-b). Spill-frequency and detection-rate
indicators showed the same pattern: simulated event counts ranged
from 26 in the block-based models to 29 in Lumped, with detection rates
highest for Lumped (90.6 %) and lowest for the block-based models
(81.2 %).

Peak discharge and overflow duration exhibited consistent biases
across configurations (Fig. 6¢—d). All models overpredicted peak flows
and underestimated long durations. At the 90th percentile, observed

Blocks:
Synthetic, ¢

! 1 1 I -
0 5 10 15 20
CSO Contribution (%)

Fig. 5. Maps of Hydraulic Performance Index (HPI) and subcatchment combined sewer overflow (CSO) contribution for two storm classes (T < 1 year, T = 10 year).
Subcatchments shading indicates relative CSO contributions (% of total overflow volume) while conduits are coloured based on their hydraulic performance,
highlighting regions of significant stress and potential surcharging. Blocks: Synthetic,es shows that pipes are undersized near the outlet. Thiessen: Real,e; shows an
unrealistic spatial distribution of total inflow (combined dry- and wet-weather contributions).
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peak discharge was 258 L/s, compared to 350 L/s in the Thiessen model
and 448-488 L/s in the block-based setups. In contrast, the Lumped
configuration aligned with the observed median but still overshot higher
percentiles. Overflow durations showed the opposite trend: observed
events exceeded 13 h at the 90th percentile, whereas simulated dura-
tions ranged from 8 to 9 h. Median durations clustered between 2.5 and
3.1 h, well below the observed 5.6 h. Overall, the network-based models
produced shorter hydrographs, while the Lumped setup better approx-
imates duration but fails to reproduce extremes.

Model performance varied further with storm characteristics. Under
moderate-depth rainfall (15-45 mm), all configurations produced rela-
tively small biases, whereas high-depth storms yielded larger spreads,
with the block-based setups tending to overestimate volumes. Events
following long antecedent dry periods (> 24 h) were reproduced more
reliably, while those with short dry periods showed wide variability.
Infrequent storms (T > 1 yr, 6 h) were the most difficult to capture,

showing wide interquartile ranges and frequent overestimation. These
findings indicate that event-scale uncertainty increases under extreme
or transitional conditions, even when global parameter sets are applied.
The detailed event-by-event classification, including how volume error
varied with rainfall depth, antecedent dry period, and return period, is
provided in Supplementary Figure SF3.

4. Discussion

Urban drainage models are essential tools for mitigating combined
sewer overflows (CSOs), but their practical use is often constrained by
limited access to detailed network data due to security restrictions, data
fragmentation, or incomplete digitisation. This study addresses that
challenge by treating urban blocks as dual-purpose units—hydrological
response units and structural elements for generating a gravity-
consistent synthetic sewer network from open geospatial data. The
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resulting block-based workflow aligns both runoff representation and
network structure with urban form, enabling complete SWMM model
setups when infrastructure datasets are unavailable. Although the study
did not simulate specific LID measures, the analyses identified hydrau-
lically stressed and high-impact blocks, indicating where decentralised
interventions could be prioritised within the catchment. Among the four
configurations, the synthetic block model reproduced overflow volumes
within -10 % to +20 %, matched 80 % of peak timings within 15 min,
and reduced structural complexity by approximately 30 %. These values
fall within accepted performance ranges for urban drainage models,
indicating accuracy adequate for comparative CSO screening and early-
stage planning. This simplification, however, introduces trade-offs:
about one-third of conduits in the synthetic network experienced sur-
charging, with localised flooding near the outlet, but overall the block-
based models maintained reasonable hydraulic performance under
strong data reduction.

Cross-validation (CV) results revealed consistent patterns in model
calibration and predictive skill. Differences in normalised Kling-Gupta
efficiency (KGE) were mainly influenced by the proportion of valid
simulations (KGE > 0.2) rather than by the best-fold performance, with
the synthetic block model achieving the highest share. Predictive skill
did not differ significantly across configurations (Kruskal-Wallis, p >
0.1), consistent with homogeneous rainfall forcing that drove similar
system responses. Most storms (27 of 32) were frequent (T < 1 yr) and
low-intensity, yet they directly triggered CSOs in this catchment; high-
intensity storms were rare. Consequently, calibration reflects behav-
iour under frequent storms and provides limited insight into rare,
intense events. Given the limited storm diversity, these findings eluci-
date the inherent need for CSO datasets spanning low-, medium-, and
high-intensity events to achieve stable, generalisable parameter esti-
mates across conditions. Despite this limitation, consistent structural
biases persisted: the Lumped model overestimated overflow volumes,
whereas network-based configurations, especially synthetic layouts,
underestimated peak discharges and shortened hydrograph tails.
Observed flows continued well after rainfall ceased, reflecting delayed
drainage and in-pipe storage that are only partly captured in the
simplified layouts. Shorter flow paths, reduced conduit storage, and
discharge-only calibration therefore yielded sharper runoff responses
and faster hydrograph recession. Within the limits of the available
dataset, the results indicate that predictive reliability is primarily gov-
erned by structural simplification rather than by optimisation
constraints.

Network structure strongly shaped model performance. The block-
based configurations isolated this effect. Blocks: Real,e, which pre-
served the surveyed network, remained hydraulically stable across
storm types. In contrast, the synthetic configuration performed well for
frequent to moderate storms but showed increased stress during rela-
tively rare, intense storms. The synthetic network therefore operated
largely within its effective range, and its weaker performance under rare
extremes reflects structural sensitivity rather than a conceptual incon-
sistency. Spatial diagnostics confirmed that hydraulic stress in the syn-
thetic layout stemmed not only from smaller conduit diameters but also
from geometric and topological trade-offs in the automated layout,
including shallow cover depths, minimal detention volume in the outlet
zone, and abrupt slope changes at the inlet of the flow control structure.
Smaller conduit diameters in the outlet zone further restricted convey-
ance capacity, amplifying surcharge and localised flooding, as reflected
by elevated Hydraulic Performance Index (HPI) values. Similar limita-
tions of synthetic layouts have been noted elsewhere (Chegini and Li,
2022; Dobson et al., 2025; Duque et al., 2022; Ghosh and Hellweger,
2012). Targeted refinements, such as profile smoothing, minimum cover
and surcharge constraints (Dobson et al., 2025), or simple outlet-zone
detention, can mitigate core limitations without compromising compu-
tational effort. Compared with lumped models, which reproduce overall
volumes but lack spatial resolution and conduit dynamics (Cantone and
Schmidt, 2009; Farina et al., 2023; Goldstein et al., 2016), the
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block-based framework offers a practical middle ground: it preserves
spatial and hydraulic detail necessary to trace conveyance processes
while remaining simple enough for automated generation and
data-scarce settings.

Beyond standard performance metrics, the models revealed distinct
patterns in reproducing CSO behaviour for event volumes, durations,
and peak flows. Overflow volumes were generally reproduced within
accepted ranges, though network-based configurations tended to un-
derestimate, while the Lumped model showed smaller average biases
but with inconsistent direction. Overflow durations were substantially
underestimated across all configurations: simulated durations for long
events were typically truncated to 8-9 h, whereas observed values
exceeded 13 h. These deviations further illustrate how network struc-
ture, particularly conduit storage and drainage density, influences both
volume and duration, reinforcing the link between structural simplifi-
cation and modelled CSO behaviour. Reductions in conduit storage
suppress hydrograph tails and underestimate cumulative overflow
(Supplementary Figure SF2). Conduit storage also influences peak
magnitude, with reduced capacity leading to higher simulated peaks
(Cantone and Schmidt, 2009). Block-based models consistently over-
estimated peak discharges (448-488 L/s vs. 258 L/s observed at the 90th
percentile), whereas the Lumped configuration matched the median but
still overpredicted the upper percentiles. Similar peak inflation has been
reported for the same catchment in SuDS scenario modelling (Joshi
et al.,, 2021), indicating that even detailed models face challenges
reproducing peak flows. This reflects a well-known trade-off: structural
simplification broadens applicability but limits representation of
peak-modifying processes, such as detention, surface routing, and flow
attenuation (Cantone and Schmidt, 2009). These results emphasise that
realistic reproduction of CSO dynamics depends on representing storage
and attenuation processes that shape overflow duration and peak con-
trol. Addressing these mechanisms—through improved conduit storage
representation or coupled surface routing—offers the most direct path to
reducing residual biases in simplified models.

Although the block-based framework successfully reproduced base-
line CSO dynamics, several limitations should be acknowledged.
Stormwater inflows were estimated using a uniform multiplier (com-
bined-sewer factor) applied to dry-weather peaks derived from block-
level population estimates that preserved the catchment’s population
characterisation, rather than computing them directly from impervious
area and rainfall. However, because overflow volumes are highly sen-
sitive to impervious-area coverage within each block, this simplification
may bias conduit sizing and, consequently, affect overall system ca-
pacity. Site-specific factors—e.g., high groundwater infiltration that
prolongs hydrograph recession tails (Supplementary Figure SF2)—are
only coarsely represented; adding storage or infiltration elements could
better represent site-specific drainage behaviour (Blumensaat et al.,
2023a; Staufer et al., 2012). While incorporating site-specific factors and
detailed engineering design would improve model fidelity, data-reduced
methods are inherently unable to capture such fine-scale processes. They
will always involve some loss of accuracy.

Furthermore, we evaluated the block-based modelling framework in
a small, highly monitored catchment that provided detailed structural
information for comparing real and synthetic networks, where frequent
storms triggered CSOs. As noted earlier, calibration primarily reflects
common storm conditions. Transferability depends on surface and
network representation: in dense areas, well-defined streets aid block
delineation, but complex surface flow paths, storage, and local drainage
features are only approximated; in peri-urban or low-density settings,
irregular block boundaries, longer flow paths, higher infiltration po-
tential, and greater depression storage delay and attenuate runoff,
potentially requiring adapted delineation or hydrological parameter-
isation. Synthetic networks generated from open data provide a prac-
tical starting point for ungauged or data-poor catchments, but fidelity
hinges on assumptions about pipe sizing, runoff, and local detention that
vary across cities. Accordingly, while the proposed workflow offers a
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useful baseline when surveyed sewer data are unavailable, its uncer-
tainty is likely to increase in areas where rainfall patterns, impervious-
ness, or drainage layouts differ strongly from those in this study.
Together, these factors bound this proof of concept: it demonstrates
functional feasibility and identifies where greater physical detail and
broader testing are required.

Using urban blocks as the spatial basis for stormwater management
provides a practical way to link hydrological modelling with urban
planning. Conceptually, the framework is transferable and extensible, as
block geometries can be coupled with other hydrologic-hydraulic
models or water-quality models and integrated into planning tools to
explore green infrastructure options. Future work should refine syn-
thetic network fidelity, expand calibration across various storm condi-
tions and urban settings, and include water quality modules to support
source-control assessments.

5. Conclusions

This study demonstrates that urban blocks can serve as hydrologi-
cally and hydraulically meaningful spatial units for modelling combined
sewer overflows (CSOs), offering a practical middle ground between
lumped and survey-dependent reference models. By aligning runoff
generation and sewer connectivity with urban form, the block-based
framework reproduced key CSO dynamics under frequent storm condi-
tions while reducing structural complexity and data demands by nearly
one-third.

Across three objectives—(i) access model accuracy along data-
reduction gradient, (ii) evaluate network-level hydraulic performance,
and (iii) examine event-scale CSO behaviour, the results show that:

o First, cross-validation across 32 storm events showed that simplified
block-based configurations maintained predictive skill comparable
to the reference configuration. Systematic biases—volume underes-
timation and shortened hydrograph tails in network-based setups,
and volume overestimation in the lumped model—highlight how
structural simplification shapes storage representation and runoff
dynamics. These results indicate that meaningful model simplifica-
tion is achievable while retaining reliable performance under the
storm conditions represented in this study.

e Second, network-level evaluation showed that hydraulic stress dur-
ing more intense storms occurred primarily in the synthetic config-
uration, where limited conduit storage, shallow cover depths, and
smaller pipe diameters in the outlet zone restricted local capacity and
increased surcharge potential. In contrast, the Blocks: Real, model
remained hydraulically stable across events, demonstrating that
urban blocks can function as consistent hydrological units when
coupled with a surveyed network, whereas synthetic layouts require
further refinement to better represent extreme-event behaviour.
Third, all configurations reproduced spill frequencies and overflow
detection patterns. Block-based models preserved the spatial attri-
bution of contributing areas, linking hydraulic performance to
planning and enabling identification of blocks with high potential for
decentralised (LIDs) stormwater management or partial disconnec-
tion to relieve sewer capacity.

Overall, the block-based framework demonstrates that open and/or
minimal datasets can support the setup of hydraulically coherent SWMM
models capable of reproducing key CSO dynamics under strong data
reduction. While broader testing across diverse storm regimes and urban
contexts is needed, the framework provides a transparent and scalable
foundation for CSO screening and early-stage planning in settings where
detailed networks are limited or unavailable.
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