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A B S T R A C T

Combined sewer overflows (CSOs) remain a major source of urban water pollution, exacerbated by increasing 
rainfall extremes and expanding impervious surfaces. Yet efforts to model and mitigate CSOs are often hampered 
by limited access to detailed sewer infrastructure data. This study presents a data-reduced modelling framework 
based on delineated urban blocks, which serve as both hydrological response units and the spatial basis for 
generating gravity-consistent synthetic sewer networks from open geospatial data. We compared four model 
configurations: Thiessen polygons with a real network, blocks with a real network, blocks with a synthetic 
network, and a lumped model, using 32 monitored overflow events in a Swiss catchment. The synthetic block 
model reproduced overflow volumes within –10 % to +20 %, matched 80 % of peak timings within 15 min, while 
reducing structural complexity by approximately 30 %. Kling–Gupta efficiency scores confirmed valid perfor
mance, though simplified models tended to overpredict peak flows and underestimate overflow durations. The 
synthetic configuration exhibited more frequent surcharging and lower conduit storage near the outlet, reflecting 
geometric trade-offs in the automated layout. Despite these limitations, block-based models preserve spatial 
attribution of runoff and enable rapid screening of decentralised interventions without requiring full network 
datasets. The framework supports early-stage planning and is compatible with both open-source and utility-held 
data. By aligning model structure with urban form and reducing data demands, this approach offers a scalable, 
reproducible framework for planning and prioritising decentralised interventions for CSO mitigation, even in 
cities with limited access to sewer infrastructure data.

1. Introduction

Combined sewer systems (CSS), introduced in the mid-nineteenth 
century to protect public health, still serve many modern cities as 
single-pipe systems to convey both wastewater and stormwater to 
treatment plants (Butler et al., 2018; Tibbetts, 2005). Even during 
common storm events, these systems can become overloaded, triggering 
overflows at designated relief points—combined sewer overflows 
(CSOs)—or through manholes, which remain a major contributor to 
urban water pollution despite stormwater dilution (Petrie, 2021; Phillips 
et al., 2012). Urbanisation and climate change intensify this challenge: 
the expansion of impervious surfaces increases runoff volumes, while 
shifts in rainfall patterns, including more frequent short, intense bursts, 
can push many systems beyond their intended operating range (Angel, 
2023; Farina et al., 2024; Fowler et al., 2021). Regulatory standards 
have tightened internationally; for example, the revised 2024 EU Urban 

Wastewater Treatment Directive sets a non-binding target to limit storm 
overflows to ≤2 % of annual dry-weather load, while the U.S. policy 
similarly enforces controls under the CSO Control Policy and Water 
Infrastructure Act (European Parliament and Council of the European 
Union, 2024; United States Congress, 2019; United States Environ
mental Protection Agency, 1994). Despite these efforts, infrastructure 
once built to protect public health still pollutes urban waterways, 
underscoring the need for planning tools that help cities evaluate 
decentralised stormwater interventions and reduce pressure on cen
tralised systems.

Cities increasingly rely on decentralised stormwater measures to 
reduce surface runoff entering combined sewer systems and improve 
urban water resilience. Low Impact Development (LID) approaches are 
one such measure that introduce infiltration and storage features into 
the urban fabric to retain runoff near its source (Friesen et al., 2025; 
Martin-Mikle et al., 2015; Wright et al., 2016). Supporting such 

* Corresponding author.
E-mail address: daneish.despot@ufz.de (D. Despot). 

Contents lists available at ScienceDirect

Water Research X

journal homepage: www.sciencedirect.com/journal/water-research-x

https://doi.org/10.1016/j.wroa.2025.100466
Received 11 September 2025; Received in revised form 8 December 2025; Accepted 9 December 2025  

Water Research X 30 (2026) 100466 

Available online 10 December 2025 
2589-9147/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0002-8980-5651
https://orcid.org/0000-0002-8980-5651
https://orcid.org/0000-0002-2430-1612
https://orcid.org/0000-0002-2430-1612
https://orcid.org/0000-0003-1108-6121
https://orcid.org/0000-0003-1108-6121
https://orcid.org/0000-0003-2119-6615
https://orcid.org/0000-0003-2119-6615
https://orcid.org/0000-0003-0454-0437
https://orcid.org/0000-0003-0454-0437
mailto:daneish.despot@ufz.de
www.sciencedirect.com/science/journal/25899147
https://www.sciencedirect.com/journal/water-research-x
https://doi.org/10.1016/j.wroa.2025.100466
https://doi.org/10.1016/j.wroa.2025.100466
http://creativecommons.org/licenses/by/4.0/


interventions requires planning tools that can represent spatial vari
ability in runoff generation at appropriate scales. However, many 
existing planning tools face practical limitations when applied to this 
context: they require detailed input data due to high data demands, lack 
spatial explicitness, are difficult to reproduce with open datasets, and 
often prioritise detailed simulation over usability (Bach et al., 2020; 
Duque et al., 2022; Kuller et al., 2022, 2017; Rauch et al., 2017).

For CSO mitigation in particular, planning tools require an under
standing of how surface runoff is routed through sewer networks, yet 
available modelling approaches fall at opposite ends of the spectrum. 
Detailed urban drainage models, such as the U.S. Environmental Pro
tection Agency (EPA) Stormwater Management Model (SWMM), pro
vide comprehensive representations of runoff generation and hydraulic 
routing (Rossman, 2010), but require extensive input data and high 
computational effort, which limit their use in early-stage planning 
(Chegini et al., 2025). Network simplification strategies—including 
conduit pruning, subcatchment aggregation, and network skel
etonisation—reduce model resolution but still depend on surveyed 
sewer networks and case-specific assumptions (Cantone and Schmidt, 
2009; Goldstein et al., 2016; Krebs et al., 2014; Pichler et al., 2024). At 
the opposite extreme, hydrological simplification approaches omit the 
sewer network entirely and rely on lumped or data-driven formulations 
that estimate overflows using proxy variables such as imperviousness, 
rainfall, or population (Farina et al., 2023; Montoya-Coronado et al., 
2024; Quaranta et al., 2022). Collectively, these detailed and highly 
simplified approaches leave a clear methodological gap: a simple, 
spatially explicit, open-data modelling framework that retains essential 
hydraulic information while remaining compatible with early-stage 
planning.

Urban blocks represent a practical spatial unit for managing runoff 
near its source. Defined as the areas enclosed by bordering streets, they 
represent the essential intermediate scale of urban form that aligns 
closely with how cities organise land use and plan local infrastructure 
(Conzen, 1960; Moudon, 1997; Oliveira, 2024; Siksna, 1997). Hydro
logically, blocks act as relatively uniform runoff units that contribute 
discretely to the larger catchment. Previous studies support this dual 
identity—as meaningful units in both urban planning and hydrology: 
the MUST-B framework demonstrated that blocks can function as the 
smallest hydrological unit for modelling infiltration and retention 
(Khurelbaatar et al., 2021), while Lippera et al. 2025 showed their 
usefulness for identifying areas suitable for decentralised interventions 
to reduce CSOs. In contrast, conventional subcatchments used in urban 
drainage models are delineated by drainage connectivity—typically as 
Thiessen polygons or DEM-based flow areas around manholes (Ji and 
Qiuwen, 2015; Si et al., 2024), which represent purely hydrologic ag
gregation units disconnected from the urban structure. To our knowl
edge, no study has examined whether block-based units can reproduce 
the hydrologic response of conventional subcatchments or explored how 
block boundaries can support the derivation of drainage inlet points and 
the generation of a synthetic sewer network directly from open geo
spatial data. This gap highlights the potential of urban blocks to bridge 
urban morphology and drainage modelling, particularly for planning 
decentralised interventions.

We propose a data-reduced, block-based modelling workflow that 
uses open geospatial data to support early-stage evaluation of combined 
sewer overflow (CSO) risk. In this framework, urban blocks serve two 
complementary roles: (i) as hydrological response units aligned with 
planning needs, and (ii) as geometric outlines for generating synthetic, 
gravity-prioritised sewer networks in the absence of detailed sewer asset 
data. We implement this capability by automatically linking each block 
to a drainage inlet and generating a network layout from street-network 
and elevation data, following graph-based hydraulic principles demon
strated in open-source tools, such as pysewer, REWATnet, and 
SWMManywhere (Calle et al., 2023; Dobson et al., 2025; Sanne et al., 
2024).

Our central question is: To what extent can urban blocks be used to 

simplify urban drainage models, both spatially and hydraulically, 
without compromising key CSO behaviours and network performance? 
To answer this, we evaluate four model configurations across a gradient 
of data complexity: a conventional model setup—the reference model, 
two block-based setups (using real and synthetic sewer networks), and a 
lumped alternative. We address this through three objectives: 

1. Assess model accuracy under different spatial and hydraulic simpli
fications using cross-validation across 32 storm events.

2. Evaluate network-level hydraulic performance using indicators such 
as the Hydraulic Performance Index (HPI) and Contributing Area 
Impact (CAI).

3. Examine CSO behaviour across configurations, focusing on reli
ability, reproducibility, and suitability for decentralised planning.

Overall, we aim to assess whether data-reduced, block-based models 
can reproduce key CSO dynamics with sufficient reliability for early- 
stage planning, and to clarify the trade-offs introduced by spatial and 
hydraulic simplification.

2. Materials and methods

2.1. Case study and monitoring data

To evaluate how spatial and hydraulic simplification affects CSO 
modelling, we tested four configurations in a real-world case study, 
including a conventional configuration and two block-based variants, as 
well as a lumped alternative. The study area used was a 16.85-hectare 
industrial CSO catchment (RÜB Industrie, RUB80) in Fehraltorf, about 
15 km east of Zürich, Switzerland. As part of the Urban Water Obser
vatory (UWO) initiative, the site provides high-resolution, open-access 
data, including a full SWMM model (the original model) and hydro
logical and meteorological observations, offering a controlled sandbox 
for developing and verifying the data-reduced modelling concept pre
sented in this study. (Blumensaat et al., 2022a, 2022b, 2023b). The CSO 
catchment receives dry-weather inflow equivalent to approximately 981 
inhabitants and surface runoff from 7.6 hectares of impervious area 
draining to a 200 m³ flow-through storage basin equipped with a pump 
station (Blumensaat et al., 2023a). Under dry weather conditions, flows 
are pumped to the wastewater treatment plant; during rainfall, excess 
water is discharged to the Kempt River via the monitored weir (Fig. 1). 
Despite its small size, the area contributes 10–15 % of the annual CSO 
volume at the catchment scale, confirming its hydraulic relevance 
(Rodriguez et al., 2024).

For this study, rainfall and combined sewer overflow observations 
from 2019 to 2020, recorded at a 1-minute temporal resolution, were 
used to identify calibration and validation events. Rainfall events were 
defined as continuous periods with an intensity >0.1 mm/h, separated 
by at least 6 h of no rain (inter-event dry period) (Broekhuizen et al., 
2020). Overflow events were identified when discharge exceeded 0.1 
L/s and were merged if interruptions ≤ 3 h occurred to preserve hy
draulic continuity and avoid splitting a single overflow response caused 
by regulator behaviour or sensor noise. Each overflow was then linked to 
a storm if it started within 6 h after the rainfall began, ensuring one 
overflow per storm event. In total, 32 observed events met these criteria 
and were used for model calibration and testing. For each event, we 
calculated rainfall duration, depth, and intensity, overflow volume and 
duration, lag time and antecedent dry period (ADP). A summary of 
rainfall event characteristics is provided in Supplementary Table ST2. 
Event severity was classified using Intensity–Duration–Frequency (IDF) 
curves (DWA-A 531, 2025) derived from a 35-year, 10-minute rainfall 
series recorded at a station 15 km from Fehraltorf (MeteoSwiss, 2024).

2.2. Urban block mapping

Urban blocks were delineated from the OpenStreetMap (OSM) street 
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network using OSMnx (Boeing, 2025). The street-network graph was 
simplified to remove artefacts such as isolated links, dead-end nodes, 
and to consolidate intersections, ensuring topological consistency. 
Blocks were then derived by converting cleaned street centerlines into 
closed polygons, assigning half the street width to each side so that 
rights-of-way were fairly distributed among adjacent blocks. This 
approach ensured geometric alignment between street layouts and block 
boundaries, producing spatially coherent hydrological response units.

Block attributes were calculated using multiple open data sources. 
Slope was derived from the UWO digital elevation model (DEM), while 
imperviousness was computed using the World Settlement Footprint 
(WSF 2019) raster (German Aerospace Center, 2023). The raster was 
clipped to block extents and sealed pixels vectorised, allowing imper
vious area to be calculated as the ratio of sealed to total block area. 
Dry-weather flow for each block was assigned using the inflow values 
defined by the catchment characteristic, while groundwater infiltration 
was distributed proportionally to match the observed total inflow con
ditions represented in the original UWO model. Additional geometric 
properties, such as block area and characteristic width, were computed 
to support hydrological parameterisation. Width was calculated as the 
area divided by convex-hull diameter (Dp), representing the block’s 

longest internal span. This setup provided each block with hydrologi
cally meaningful attributes while remaining fully automatable with 
open geospatial data.

2.3. Synthetic sewer network

To represent drainage networks in data-scarce contexts, a synthetic 
combined sewer network was generated using the open-source Python 
package pysewer (Sanne et al., 2024). This method produces topologi
cally valid, gravity-driven sewer networks using elevation data, road 
layouts, and building locations. For this study, we adapted pysewer to 
work with block geometries and to represent combined sewer flow 
conditions, including both dry- and wet-weather components. This 
method provides a quick, consistent framework for generating sewer 
network layouts that reflect the typical alignment and structure of real 
urban drainage systems, supporting exploratory analyses for planning 
applications.

Block connection manholes (drainage inlets) were used as network 
nodes and assigned the aggregated inflow attributes of the contributing 
blocks. Wet-weather contributions were represented indirectly through 
a combined-sewer factor (equivalent to the traditional dilution factor), 

Fig. 1. Overview of Fehraltorf’s industry combined sewershed, located near Zurich, Switzerland. The study focuses on a 16.85-hectare industrial CSO catchment 
(shaded), draining to the RÜB Industrie overflow structure.
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which scales dry-weather inflows by a uniform wet-to-dry ratio. This 
factor was iteratively adjusted until the total storage volume of the 
synthetic network matched that of the real system, ensuring comparable 
hydraulic behaviour while maintaining data reduction.

The synthetic network was constructed as a directed graph, with 
nodes representing manholes and conduits representing sewer sections. 
A repeated shortest-path heuristic was applied using manhole connec
tion points to generate a directed Steiner arborescence (Hwang and 
Richards, 1992) to route flows toward the CSO control structure, 
ensuring gravity-driven routing and minimising unrealistic loopbacks. 
Conduit diameters were sized based on blocks’ dry-weather peak inflows 
scaled by the combined sewer factor. Trench invert elevations were 
derived from the DEM using trench depth limits of 1–8 m and a mini
mum slope constraint of − 0.01. The conduit slope was calculated as the 
average invert slope between the upstream and downstream trench el
evations of each conduit. This workflow created a simplified network 
based on block outlines, approximating the gravity-driven routing and 
storage capacity of the real drainage system.

2.4. Connection manholes

To assign subcatchments to the connection manholes, we imple
mented two methods designed for different data scenarios. 

1. Frontage buffer method: Used when connecting to known man
holes (invert elevation available). Blocks were buffered by 10 m to 
approximate the typical placement of manholes along the public 
right-of-way. Manholes intersecting this zone were identified using a 
spatial index, and the one with the lowest invert elevation was 
selected. This improves on typical centroid-based linking ap
proaches, which often assign subcatchments to the nearest node 
using Euclidean distance or simple snapping, without considering 

topographic or urban form constraints (Schilling and Tränckner, 
2022; Si et al., 2024).

2. Road-profile method: Developed for synthetic network applica
tions where explicit manhole data are unavailable. Road elevations 
were sampled from the DEM at 10-m increments around each block, 
and the lowest point sampled was assigned the virtual connection 
manhole. To avoid overloading a single inlet point, the reuse of 
manholes was limited to three blocks per manhole. Finally, if a block 
corner (junction) was found within 30 m of the candidate manhole 
and had a similar elevation (within 0.5 m), the outlet was snapped to 
that junction, while ensuring 80 m manhole spacing was maintained. 
This ensured that connection manholes remained topographically 
plausible and aligned with the block boundary.

These connection methods are depicted in Supplementary 
Figure SF5.

2.5. Model configurations

We assembled four configurations that represent distinct positions 
along a gradient of spatial and hydraulic simplification (Fig. 2). All four 
configurations shared identical rainfall input, groundwater infiltration, 
dry-weather flow, and CSO control structure (200 m³ basin, pump sta
tion, and overflow weir; Fig. 1). This ensured that differences in results 
could be attributed solely to differences in surface discretisation and 
network representation. Each configuration is briefly described below.

1. Thiessen: Realnet
Subcatchments were delineated using Thiessen polygons around 

observed manholes, following the standard approach in SWMM practice 
when detailed surface delineations are unavailable. These polygons 
were then connected to the surveyed sewer network, preserving the real 
pipe layout, invert elevations, and control structures. This configuration 

Fig. 2. Schematic of the four model configurations tested: Thiessen: Realnet, Blocks: Realnet, Blocks: Syntheticnet, and Lumped. All share identical rainfall forcing and 
CSO control structure but differ in surface discretisation and network representation.
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represents the planning-level reference model against which alternatives 
were compared.

2. Blocks: Realnet
Urban block polygons served as subcatchments, linked to the sewer 

network via the frontage buffer method. While the network topology 
and conduit characteristics were identical to Thiessen: Realnet, the sur
face discretisation was fundamentally different, reflecting the block- 
based approach introduced in this study.

3. Blocks: Syntheticnet
Blocks were connected using the road-profile method to a synthetic 

network generated with pysewer (see 2.3 Synthetic sewer network). The 
generated network preserved topological validity and generalised 
gravity-driven routing, but differed from the surveyed network in pipe 
lengths and diameters.

4. Lumped
A single subcatchment aggregated the entire sewershed area and 

drained directly to the CSO structure, with dry-weather flow and infil
tration scaled accordingly. The internal network was reduced to a 
minimal representation, with no distributed routing or intermediate 
nodes. This setup represents the extreme simplification of both hydro
logical and hydraulic detail.

Table 1 summarises the four model configurations analysed in this 
study, highlighting the main model components and corresponding 
evaluation aims.

2.6. Overview of evaluation objectives and indicators

To evaluate how structural simplification affects model reliability, 
we assessed performance across both a data-reduction and structural 
complexity gradient, ranging from fully detailed to highly simplified 
configurations. Following James (2000), structural complexity was 
quantified using a weighted count of SWMM elements, providing 
context for interpreting trade-offs between model size and fidelity. 
Further details are provided in Supplementary Note SN1.

Performance indicators were grouped according to three supporting 
objectives (Table 2). These span: (i) model accuracy (goodness-of-fit), 
where we quantified predictive skill using Kling–Gupta efficiency (KGE; 
Gupta et al., 2009) and event-scale error metrics; (ii) network-level 
hydraulic performance, assessed with indices of stress and load; and 
(iii) event-scale CSO behaviour, characterised by volume, timing, and 
detection statistics.

For clarity, we use the following terminology: a node represents a 

SWMM junction, outfall, or storage (e.g., a manhole or inlet where 
runoff enters); a conduit is a SWMM pipe element between two nodes. A 
drainage inlet denotes the node receiving runoff from a block or 
subcatchment.

2.7. Multi-event calibration and validation

To evaluate parameter sensitivity, we first applied a variance-based 
sensitivity analysis using Saltelli sampling (N = 1024) (Saltelli, 2002; 
Sobol′, 2001), focusing on total outflow and peak flow as model re
sponses. The most influential parameters were imperviousness, imper
vious depression storage, Manning’s roughness for impervious areas, 
subcatchment width, conduit slope, and conduit roughness. These pa
rameters were retained for calibration.

To evaluate the robustness and generalisability of each model 
configuration, we applied a five-fold cross-validation framework 
inspired by standard practices in machine learning model assessment 
(Stone, 1974). In each fold, 80 % of observed events were used for 
calibration and 20 % for validation. Calibration was performed using the 
Shuffled Complex Evolution algorithm (SCE-UA) (Duan et al., 1994), as 
implemented in the SPOTPY package (Houska et al., 2015). Parameters 
were sampled from uniform distributions within bounds derived from 
the sensitivity analysis. The Kling-Gupta efficiency (KGE) was used as 
the sole objective function, with a behavioural threshold of KGE ≥ 0.2. 
Each calibration run was limited to 25,000 evaluations, with early 
stopping if convergence criteria were met. Across all folds and models, 
this yielded roughly 500,000 simulations.

Model fidelity was assessed using the Kling–Gupta Efficiency (KGE), 
supported by event-scale errors in overflow volume (%), peak discharge 
(%), and time-to-peak (minutes). To justify the performance ranges used 
in this study (Knoben et al., 2019), KGE values were compared with 
these hydrological error metrics against accepted ranges for urban 
drainage modelling (volume error:10 % to +20 %; peak error:15 % to 
+25 %; James, 2000). These thresholds correspond to performance 
typically considered sufficient to inform planning and scenario 
screening, rather than for detailed hydraulic design. This analysis 
revealed consistent clustering patterns, informing a classification 
scheme: “Poor” (KGE < 0.2), “Acceptable” (0.2–0.5), “Good” (0.5–0.7), 
and “Very Good” (KGE ≥ 0.7), as exemplified in Supplementary 
Figure SF1, which compares KGE values with overflow volume and peak 
errors. Simulations achieving KGE ≥ 0.2 were classified as behaviour
al—model runs that adequately reproduce the observed system response 
within the derived KGE threshold (Beven and Binley, 1992). The cor
responding behavioural parameter sets were then used for subsequent 

Table 1 
Overview of model configurations, key components, and evaluation aims.

Model 
configuration

Model components and 
specifications

Evaluation aim

Thiessen: 
Realnet

Conventional Thiessen- 
polygons subcatchments 
coupled with the real 
(surveyed) sewer network (SN); 
observed hydrological and site- 
specific datasets

Reference model for 
comparison with simplified 
configurations.

Blocks: Realnet Subcatchment delineation 
based on urban blocks derived 
from open geospatial datasets; 
real SN; observed hydrological 
and site-specific datasets

Assess effect of spatial 
discretisation. (Blocks vs 
Thiessen polygons)

Blocks: 
Syntheticnet

Subcatchment delineation 
based on urban blocks derived 
from open geospatial datasets, 
use of synthetic SN; observed 
hydrological, site-specific 
datasets,

Evaluate whether blocks and 
sewer networks derived from 
open geospatial data can 
reproduce CSO dynamics 
where no surveyed SN data are 
available.

Lumped Single aggregated 
subcatchment without a sewer 
network

Establish lower-bound 
performance sensitivity to 
complete structural 
simplification.

Table 2 
Overview of the indicators used to assess model performance with respect to the 
outlined research objectives.

Objective Indicators Definition/ Note

(i) Model accuracy 
along data- 
reduction 
gradient

Raw KGE; Normalised KGE 
(KGE × acceptance rate, 
threshold KGE ≥ 0.2); 
Overflow volume error (%); 
Peak flow error (%); Time- 
to-peak error (min)

KGE compares correlation, 
bias, and variability 
between simulated and 
observed CSO discharge; 
event-scale errors quantify 
accuracy of specific 
hydrograph features.

(ii) Network-level 
hydraulic 
performance

Hydraulic Performance 
Index (HPI); Contributing 
Area Impact (CAI); CSO 
attribution; Flow Instability 
Index (FII)

HPI: surcharge relative to 
burial depth (%). CAI: 
upstream load share (%). 
Critical conduits defined by 
HPI ≥ 60 and CAI ≥ 75.

(iii) Event-scale 
CSO behaviour

Overflow volume 
classification; Peak 
discharge distribution; 
Overflow duration 
distribution; Spill frequency; 
Detection rate; Error 
direction

Derived from event-scale 
simulations, compared with 
32 observed events. 
Captures whether simplified 
models reproduce the 
magnitude, timing, and 
frequency of CSO events.
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analysis.
For each fold, the median of all behavioural parameter sets from the 

training phase was selected as the representative parameter set, which 
was then applied to the associated test events. This constituted the test 
phase of the cross-validation framework, which primarily evaluated 
model generalisability. Model performance was evaluated per test event 
and aggregated across folds using KGE, normalised KGE, event rejection 
rate (proportion of test events with KGE < 0.2), and the previously 
defined error metrics.

To assess differences between model configurations, non-parametric 
statistical tests were applied. The Kruskal–Wallis H test was used to 
assess overall differences in KGE and normalised KGE, and Man
n–Whitney U tests were applied for pairwise comparisons between 
reference or lumped models and the block-based alternatives.

Finally, a global parameter set was derived by pooling all valid 
parameter sets (KGE ≥ 0.2) from the training phases of all folds and 
computing their median. This aggregated set was then applied in full- 
domain simulations to assess combined sewer overflow (CSO) dy
namics and hydraulic performance under representative conditions. 
Parameter bounds and uniform distributions used in calibration are 
listed in Supplementary Table ST4.

2.8. Network and CSO performance metrics

Performance was evaluated at both the external CSO scale and the 
internal network scale using a combination of indices and graph-based 
tracing methods.

The Hydraulic Performance Index (HPI) quantified conduit stress as 
the ratio of surcharge height above the pipe crown to burial depth, 
expressed as a percentage. Conduits without surcharge (free surface flow 
conditions) were assigned an HPI of 0, while 100 % indicates when the 
surcharge reaches ground level. Conduits with an HPI ≥ 60 % were 
considered critically stressed.

To determine a subcatchment’s contribution to CSO, we assessed 
whether the subcatchment’s outlet node has a directed path to the CSO 
node within the sewer network graph. Subcatchments with a reachable 
path were included in the contributor set U c . The relative contribution 
of each subcatchment was then calculated as: 

Ci = 100 ×

(
Vi

∑
j∈U c

Vj

)

Where Vi denotes the total runoff volume from the subcatchment i 
during the storm event. Subcatchments with no downstream path to the 
CSO node or with a zero-runoff volume were assigned a zero contribu
tion, ensuring that only hydraulically connected areas were considered.

The Contributing Area Impact (CAI) captured load accumulation by 
tracing runoff propagation through the network. CAI for each conduit 
was defined as a volume-weighted flow accumulation index (Beven and 
Kirkby, 1979; Reyes-Silva et al., 2020). For each subcatchment, all 
conduits downstream of its outlet were identified, including the initial 
pipe segment and its runoff volume. Repeating this for all subcatchments 
yielded total accumulated volumes per conduit. CAI for conduit k was 
then expressed as: 

CAIk = 100 ×

∑
i1(i→k)⋅Vi

max
m

( ∑
i1(i→m)⋅Vi

)

where 1(i→k) is an indicator equal to 1 if pipe k lies on a downstream 
path from subcatchment i, and 0 otherwise. This metric identifies 
accumulation hotspots and potential bottlenecks, relative to the most 
loaded conduit.

Plotting HPI against CAI for all conduits enabled classification into 
stable, stressed, loaded, or critical categories, highlighting bottlenecks 
and stress patterns. These two indices formed the core of our hydraulic 
evaluation. Additional diagnostics, including the Flow Instability Index 

(FII), conduit storage, and monotonic upsizing checks, are provided in 
Supplementary Note SN3.

At the CSO scale, we reported overflow volume, peak discharge, and 
duration. Events were deemed valid if they met the KGE threshold of ≥
0.2. Spill frequency, detection rates, and error direction (over- vs un
derestimation) were also analysed. To interpret event-scale overflow- 
volume errors, simulated volumes were classified as Good (<15 %), 
Acceptable (15–30 %), or Poor (>30 %), consistent with recommended 
tolerances typically used in urban drainage modelling (James, 2000).

2.9. Modelling framework and automation

All simulations were carried out with the U.S. EPA Storm Water 
Management Model (SWMM), using the dynamic-wave solver to ac
count for surcharging, backwater effects, and flow reversals (Rossman, 
2017). The workflow was automated in Python, with swmm-api 
(Pichler, 2025) used for input file manipulation and result extraction, 
pysewer (Sanne et al., 2024) for synthetic network generation, SALib 
(Herman and Usher, 2017), for sensitivity analysis, SPOTPY (Houska 
et al., 2015) for calibration, and NetworkX (Hagberg et al., 2008) for 
graph-based diagnostics. Statistical analyses were performed with SciPy 
(Virtanen et al., 2020). All simulations were carried out on a 
high-performance computing cluster (See Additional Data). A full list of 
package versions is provided in Supplementary Table ST10 and 
Figure SF4, which shows the automated block-SWMM modelling 
pipeline.

3. Results

3.1. Comparison of performance along a data-reduced gradient

We compared the four model configurations along a gradient of 
spatial and hydraulic complexity, ranging from the detailed Thiessen: 
Realnet (the reference) to the fully aggregated Lumped setup. Relative to 
the reference, structural complexity was reduced by approximately 12 % 
in Blocks: Realnet, 28 % in Blocks: Syntheticnet, and 91 % in Lumped, 
reflecting fewer SWMM elements (subcatchments, nodes, and conduits) 
while preserving the same hydrologic and hydraulic process represen
tations. The Lumped setup contained nearly one order of magnitude 
fewer elements than the network-based configurations. The full break
down of subcatchments, nodes, and complexity scores is provided in 
Supplementary Table ST1.

Cross-validation results show that all configurations reproduced CSO 
discharge with comparable overall predictive skill, although their con
sistency across events differed (Fig. 3). The Lumped model achieved the 
highest raw KGE scores but had the lowest acceptance rate—fewer than 
one in four test events exceeded the behavioural threshold (KGE ≥ 0.2). 
Consequently, its normalised KGE, defined as the product of the KGE and 
acceptance rate, dropped significantly. In contrast, Blocks: Syntheticnet 
was the most consistent, yielding the highest number of valid test events 
and the lowest rejection rate. The Thiessen: Realnet and Blocks: Realnet 
configurations performed intermediately, with fold-level KGE typically 
ranging from 0.35 to 0.59. Differences in normalised performance were 
mainly driven by acceptance rates rather than by best-fold outcomes. 
The Kruskal–Wallis H test indicated no statistically significant differ
ences in KGE across the model configurations (p-value > 0.1), suggest
ing that, on average, all models reproduced overflow dynamics with 
comparable predictive skill. Pairwise statistical comparisons are avail
able in Supplementary Note SN2.

Event-scale error metrics further illustrate how simplification 
affected overflow dynamics. The Lumped model showed the smallest 
deviations in overflow volume (–12.5 ± 15.0 %) and peak flow (5.9 ±
3.6 %), although its time-to-peak error was highly variable (–3.5 ± 33.3 
min). Blocks: Syntheticnet achieved similar reliability for volume (–20.2 
± 16.7 %) and time-to-peak (0.5 ± 13.9 min), but exhibited larger peak 
errors (38.6 ± 13.1 %). The Thiessen: Realnet and Blocks: Realnet both 
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tended to underestimate overflow volumes (− 31 % and –34 %), while 
overestimating peaks (32–34 %). In all network-based models, the peaks 
were generally too high; however, the timings were within 10 min of the 

observed events. These results indicate that simplification primarily 
affects error direction and consistency across events, while overall 
model performance remains comparable.

Fig. 3. Cross-validation performance based on raw and normalised Kling–Gupta efficiency (KGE). KGE values are calculated with respect to the CSO discharge 
(QCSO). The normalised KGE: KGE × acceptance rate (i.e., the proportion of test events with KGE ≥ 0.2 in each fold). Folds are represented by the black dots (folds 
with no valid model responses were excluded), with fold-level results derived from simulations of 6–7 test events per fold.

Fig. 4. Conduit-level HPI–CAI scatter by model and storm class. Each point is a conduit; colours denote model configuration, and markers show storm return periods: 
T ≤ 1 yr, T = 3 yr, T = 10 yr (duration: 5–6 h). The vertical line marks CAI = 75 % (high load) and the horizontal line marks HPI = 60 % (high stress); points in the 
upper-right are both high-load and high-stress. HPI = Hydraulic Performance Index (surcharge relative to burial depth, %), CAI = Contributing Area Impact (up
stream load share, %). Markers are shown with a small positional offset to reveal overlaps; all thresholds and statistics use the original values.
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3.2. Impact of the block-based delineation and network simplification on 
the hydraulic performance

Differences in network representation strongly influenced hydraulic 
behaviour. Plots of conduit stress (Hydraulic Performance Index, HPI) 
versus load accumulation (Contributing Area Impact, CAI) revealed 
clear contrasts between the real and synthetic layouts (Fig. 4). In the 
Thiessen: Realnet and Blocks: Realnet configurations, conduits clustered 
almost entirely in the stable quadrant, with median HPI values close to 
zero and few conduits exceeding the 60 % surcharge threshold. High- 
load conduits (CAI ≥ 75 %) were rare, and no flooding was observed. 
Stress and load remained broadly distributed across the network, with 
attenuation capacity concentrated near the inlet of the CSO control 
structure, indicating a hydraulically coherent system.

The block-based with the synthetic network displayed markedly 
different behaviour. Roughly one-quarter of conduits exceeded the 60 % 
HPI threshold under frequent storms (T ≤ 1 year, 6 h), increasing to one- 
third under rarer 10-year return events. Several nodes flooded, and 
conduits with CAI ≥ 75 % were concentrated near the outlet, with a 
median CAI of 16.3 % compared to 10.9 % in the real block network. As 
shown in Fig. 4, conduits in the synthetic network shifted toward the 
high-stress and high-load region with increasing storm severity, whereas 
the real-network models remained largely stable.

Spatial diagnostics reinforced these findings. Maps of HPI and CSO 
attribution (Fig. 5) illustrated that surcharge in the real networks was 
dispersed across upstream reaches, while attenuation potential accu
mulated in the outlet zone (the last 300 m before the outlet), where 
490.2 m³ of conduit storage was available. By contrast, the synthetic 
layout exhibited shallower cover depths near the outlet (+3.2 m vs. a 
median outlet cover depth of − 2.6 m in the real network). The synthetic 

network provided only 351 m³ of conduit storage, 139.2 m³ less than the 
real network, mainly due to the smaller pipe diameters concentrated in 
the outlet zone. These deficiencies resulted in a concentration of sur
charge and high loads directly upstream of the CSO structure, co-located 
with the subcatchments contributing the largest CSO volumes. The 
flooded node volume reached 361 m³ in the synthetic network during 
the 10-year storm, whereas no flooding occurred in either of the real- 
network configurations. These diagnostics highlight that the synthetic 
layout concentrated hydraulic stress in the outlet zone, whereas the real- 
network configurations distributed it more broadly. Supporting network 
diagnostics are given in Supplementary Tables ST7–9.

3.3. Assessment of event-based replication of CSO behaviour

Fig. 6 summarises how well each configuration reproduced observed 
CSO dynamics across 32 events from 2019 to 2020. The Lumped 
configuration produced the largest share of “Good” events (overflow- 
volume error <15 %, 28.1 %), followed by the Thiessen reference (25 
%). Both block-based configurations captured event dynamics but more 
frequently fell into the “Poor” category (>30 % error; 72–75 % of 
events). The error direction was systematic: the Lumped model consis
tently overestimated volumes, whereas the network-based configura
tions underestimated (Fig. 6a-b). Spill-frequency and detection-rate 
indicators showed the same pattern: simulated event counts ranged 
from 26 in the block-based models to 29 in Lumped, with detection rates 
highest for Lumped (90.6 %) and lowest for the block-based models 
(81.2 %).

Peak discharge and overflow duration exhibited consistent biases 
across configurations (Fig. 6c–d). All models overpredicted peak flows 
and underestimated long durations. At the 90th percentile, observed 

Fig. 5. Maps of Hydraulic Performance Index (HPI) and subcatchment combined sewer overflow (CSO) contribution for two storm classes (T ≤ 1 year, T = 10 year). 
Subcatchments shading indicates relative CSO contributions (% of total overflow volume) while conduits are coloured based on their hydraulic performance, 
highlighting regions of significant stress and potential surcharging. Blocks: Syntheticnet shows that pipes are undersized near the outlet. Thiessen: Realnet shows an 
unrealistic spatial distribution of total inflow (combined dry- and wet-weather contributions).
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peak discharge was 258 L/s, compared to 350 L/s in the Thiessen model 
and 448–488 L/s in the block-based setups. In contrast, the Lumped 
configuration aligned with the observed median but still overshot higher 
percentiles. Overflow durations showed the opposite trend: observed 
events exceeded 13 h at the 90th percentile, whereas simulated dura
tions ranged from 8 to 9 h. Median durations clustered between 2.5 and 
3.1 h, well below the observed 5.6 h. Overall, the network-based models 
produced shorter hydrographs, while the Lumped setup better approx
imates duration but fails to reproduce extremes.

Model performance varied further with storm characteristics. Under 
moderate-depth rainfall (15–45 mm), all configurations produced rela
tively small biases, whereas high-depth storms yielded larger spreads, 
with the block-based setups tending to overestimate volumes. Events 
following long antecedent dry periods (> 24 h) were reproduced more 
reliably, while those with short dry periods showed wide variability. 
Infrequent storms (T > 1 yr, 6 h) were the most difficult to capture, 

showing wide interquartile ranges and frequent overestimation. These 
findings indicate that event-scale uncertainty increases under extreme 
or transitional conditions, even when global parameter sets are applied. 
The detailed event-by-event classification, including how volume error 
varied with rainfall depth, antecedent dry period, and return period, is 
provided in Supplementary Figure SF3.

4. Discussion

Urban drainage models are essential tools for mitigating combined 
sewer overflows (CSOs), but their practical use is often constrained by 
limited access to detailed network data due to security restrictions, data 
fragmentation, or incomplete digitisation. This study addresses that 
challenge by treating urban blocks as dual-purpose units—hydrological 
response units and structural elements for generating a gravity- 
consistent synthetic sewer network from open geospatial data. The 

Fig. 6. Event-scale evaluation of overflow dynamics. (a) Event precipitation depth. (b) Overflow volume errors for each model configuration across 32 events, with 
bubble size indicating error class (<15 % = Good; 15–30 % = Acceptable; >30 % = Poor) and colour showing error direction ( = underestimate, = overestimate). 
(c) Cumulative distribution of simulated versus observed peak discharges—all models overestimate peak flow, reflecting limited flow attenuation and storage effects 
(subcatchment and network). (d) Cumulative distribution of simulated versus observed overflow durations—shorter simulated duration because delayed drainage 
and lagged inflow are represented.
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resulting block-based workflow aligns both runoff representation and 
network structure with urban form, enabling complete SWMM model 
setups when infrastructure datasets are unavailable. Although the study 
did not simulate specific LID measures, the analyses identified hydrau
lically stressed and high-impact blocks, indicating where decentralised 
interventions could be prioritised within the catchment. Among the four 
configurations, the synthetic block model reproduced overflow volumes 
within –10 % to +20 %, matched 80 % of peak timings within 15 min, 
and reduced structural complexity by approximately 30 %. These values 
fall within accepted performance ranges for urban drainage models, 
indicating accuracy adequate for comparative CSO screening and early- 
stage planning. This simplification, however, introduces trade-offs: 
about one-third of conduits in the synthetic network experienced sur
charging, with localised flooding near the outlet, but overall the block- 
based models maintained reasonable hydraulic performance under 
strong data reduction.

Cross-validation (CV) results revealed consistent patterns in model 
calibration and predictive skill. Differences in normalised Kling–Gupta 
efficiency (KGE) were mainly influenced by the proportion of valid 
simulations (KGE ≥ 0.2) rather than by the best-fold performance, with 
the synthetic block model achieving the highest share. Predictive skill 
did not differ significantly across configurations (Kruskal–Wallis, p >
0.1), consistent with homogeneous rainfall forcing that drove similar 
system responses. Most storms (27 of 32) were frequent (T ≤ 1 yr) and 
low-intensity, yet they directly triggered CSOs in this catchment; high- 
intensity storms were rare. Consequently, calibration reflects behav
iour under frequent storms and provides limited insight into rare, 
intense events. Given the limited storm diversity, these findings eluci
date the inherent need for CSO datasets spanning low-, medium-, and 
high-intensity events to achieve stable, generalisable parameter esti
mates across conditions. Despite this limitation, consistent structural 
biases persisted: the Lumped model overestimated overflow volumes, 
whereas network-based configurations, especially synthetic layouts, 
underestimated peak discharges and shortened hydrograph tails. 
Observed flows continued well after rainfall ceased, reflecting delayed 
drainage and in-pipe storage that are only partly captured in the 
simplified layouts. Shorter flow paths, reduced conduit storage, and 
discharge-only calibration therefore yielded sharper runoff responses 
and faster hydrograph recession. Within the limits of the available 
dataset, the results indicate that predictive reliability is primarily gov
erned by structural simplification rather than by optimisation 
constraints.

Network structure strongly shaped model performance. The block- 
based configurations isolated this effect. Blocks: Realnet, which pre
served the surveyed network, remained hydraulically stable across 
storm types. In contrast, the synthetic configuration performed well for 
frequent to moderate storms but showed increased stress during rela
tively rare, intense storms. The synthetic network therefore operated 
largely within its effective range, and its weaker performance under rare 
extremes reflects structural sensitivity rather than a conceptual incon
sistency. Spatial diagnostics confirmed that hydraulic stress in the syn
thetic layout stemmed not only from smaller conduit diameters but also 
from geometric and topological trade-offs in the automated layout, 
including shallow cover depths, minimal detention volume in the outlet 
zone, and abrupt slope changes at the inlet of the flow control structure. 
Smaller conduit diameters in the outlet zone further restricted convey
ance capacity, amplifying surcharge and localised flooding, as reflected 
by elevated Hydraulic Performance Index (HPI) values. Similar limita
tions of synthetic layouts have been noted elsewhere (Chegini and Li, 
2022; Dobson et al., 2025; Duque et al., 2022; Ghosh and Hellweger, 
2012). Targeted refinements, such as profile smoothing, minimum cover 
and surcharge constraints (Dobson et al., 2025), or simple outlet-zone 
detention, can mitigate core limitations without compromising compu
tational effort. Compared with lumped models, which reproduce overall 
volumes but lack spatial resolution and conduit dynamics (Cantone and 
Schmidt, 2009; Farina et al., 2023; Goldstein et al., 2016), the 

block-based framework offers a practical middle ground: it preserves 
spatial and hydraulic detail necessary to trace conveyance processes 
while remaining simple enough for automated generation and 
data-scarce settings.

Beyond standard performance metrics, the models revealed distinct 
patterns in reproducing CSO behaviour for event volumes, durations, 
and peak flows. Overflow volumes were generally reproduced within 
accepted ranges, though network-based configurations tended to un
derestimate, while the Lumped model showed smaller average biases 
but with inconsistent direction. Overflow durations were substantially 
underestimated across all configurations: simulated durations for long 
events were typically truncated to 8–9 h, whereas observed values 
exceeded 13 h. These deviations further illustrate how network struc
ture, particularly conduit storage and drainage density, influences both 
volume and duration, reinforcing the link between structural simplifi
cation and modelled CSO behaviour. Reductions in conduit storage 
suppress hydrograph tails and underestimate cumulative overflow 
(Supplementary Figure SF2). Conduit storage also influences peak 
magnitude, with reduced capacity leading to higher simulated peaks 
(Cantone and Schmidt, 2009). Block-based models consistently over
estimated peak discharges (448–488 L/s vs. 258 L/s observed at the 90th 
percentile), whereas the Lumped configuration matched the median but 
still overpredicted the upper percentiles. Similar peak inflation has been 
reported for the same catchment in SuDS scenario modelling (Joshi 
et al., 2021), indicating that even detailed models face challenges 
reproducing peak flows. This reflects a well-known trade-off: structural 
simplification broadens applicability but limits representation of 
peak-modifying processes, such as detention, surface routing, and flow 
attenuation (Cantone and Schmidt, 2009). These results emphasise that 
realistic reproduction of CSO dynamics depends on representing storage 
and attenuation processes that shape overflow duration and peak con
trol. Addressing these mechanisms—through improved conduit storage 
representation or coupled surface routing—offers the most direct path to 
reducing residual biases in simplified models.

Although the block-based framework successfully reproduced base
line CSO dynamics, several limitations should be acknowledged. 
Stormwater inflows were estimated using a uniform multiplier (com
bined-sewer factor) applied to dry-weather peaks derived from block- 
level population estimates that preserved the catchment’s population 
characterisation, rather than computing them directly from impervious 
area and rainfall. However, because overflow volumes are highly sen
sitive to impervious-area coverage within each block, this simplification 
may bias conduit sizing and, consequently, affect overall system ca
pacity. Site-specific factors—e.g., high groundwater infiltration that 
prolongs hydrograph recession tails (Supplementary Figure SF2)—are 
only coarsely represented; adding storage or infiltration elements could 
better represent site-specific drainage behaviour (Blumensaat et al., 
2023a; Staufer et al., 2012). While incorporating site-specific factors and 
detailed engineering design would improve model fidelity, data-reduced 
methods are inherently unable to capture such fine-scale processes. They 
will always involve some loss of accuracy.

Furthermore, we evaluated the block-based modelling framework in 
a small, highly monitored catchment that provided detailed structural 
information for comparing real and synthetic networks, where frequent 
storms triggered CSOs. As noted earlier, calibration primarily reflects 
common storm conditions. Transferability depends on surface and 
network representation: in dense areas, well-defined streets aid block 
delineation, but complex surface flow paths, storage, and local drainage 
features are only approximated; in peri‑urban or low-density settings, 
irregular block boundaries, longer flow paths, higher infiltration po
tential, and greater depression storage delay and attenuate runoff, 
potentially requiring adapted delineation or hydrological parameter
isation. Synthetic networks generated from open data provide a prac
tical starting point for ungauged or data-poor catchments, but fidelity 
hinges on assumptions about pipe sizing, runoff, and local detention that 
vary across cities. Accordingly, while the proposed workflow offers a 
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useful baseline when surveyed sewer data are unavailable, its uncer
tainty is likely to increase in areas where rainfall patterns, impervious
ness, or drainage layouts differ strongly from those in this study. 
Together, these factors bound this proof of concept: it demonstrates 
functional feasibility and identifies where greater physical detail and 
broader testing are required.

Using urban blocks as the spatial basis for stormwater management 
provides a practical way to link hydrological modelling with urban 
planning. Conceptually, the framework is transferable and extensible, as 
block geometries can be coupled with other hydrologic-hydraulic 
models or water-quality models and integrated into planning tools to 
explore green infrastructure options. Future work should refine syn
thetic network fidelity, expand calibration across various storm condi
tions and urban settings, and include water quality modules to support 
source-control assessments.

5. Conclusions

This study demonstrates that urban blocks can serve as hydrologi
cally and hydraulically meaningful spatial units for modelling combined 
sewer overflows (CSOs), offering a practical middle ground between 
lumped and survey-dependent reference models. By aligning runoff 
generation and sewer connectivity with urban form, the block-based 
framework reproduced key CSO dynamics under frequent storm condi
tions while reducing structural complexity and data demands by nearly 
one-third.

Across three objectives—(i) access model accuracy along data- 
reduction gradient, (ii) evaluate network-level hydraulic performance, 
and (iii) examine event-scale CSO behaviour, the results show that: 

• First, cross-validation across 32 storm events showed that simplified 
block-based configurations maintained predictive skill comparable 
to the reference configuration. Systematic biases—volume underes
timation and shortened hydrograph tails in network-based setups, 
and volume overestimation in the lumped model—highlight how 
structural simplification shapes storage representation and runoff 
dynamics. These results indicate that meaningful model simplifica
tion is achievable while retaining reliable performance under the 
storm conditions represented in this study.

• Second, network-level evaluation showed that hydraulic stress dur
ing more intense storms occurred primarily in the synthetic config
uration, where limited conduit storage, shallow cover depths, and 
smaller pipe diameters in the outlet zone restricted local capacity and 
increased surcharge potential. In contrast, the Blocks: Realnet model 
remained hydraulically stable across events, demonstrating that 
urban blocks can function as consistent hydrological units when 
coupled with a surveyed network, whereas synthetic layouts require 
further refinement to better represent extreme-event behaviour.

• Third, all configurations reproduced spill frequencies and overflow 
detection patterns. Block-based models preserved the spatial attri
bution of contributing areas, linking hydraulic performance to 
planning and enabling identification of blocks with high potential for 
decentralised (LIDs) stormwater management or partial disconnec
tion to relieve sewer capacity.

Overall, the block-based framework demonstrates that open and/or 
minimal datasets can support the setup of hydraulically coherent SWMM 
models capable of reproducing key CSO dynamics under strong data 
reduction. While broader testing across diverse storm regimes and urban 
contexts is needed, the framework provides a transparent and scalable 
foundation for CSO screening and early-stage planning in settings where 
detailed networks are limited or unavailable.
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